Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Int J Hyg Environ Health ; 257: 114341, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442666

RESUMO

Water, Sanitation, and Hygiene (WaSH) interventions are the most effective in reducing diarrheal disease severity and prevalence. However, very few studies have investigated the effectiveness of WaSH intervention in reducing pathogen presence and concentration. In this study, we employed a microfluidic PCR approach to quantify twenty bacterial pathogens in water (n = 360), hands (n = 180), and fomite (n = 540) samples collected in rural households of Nepal to assess the pathogen exposures and the effect of WaSH intervention on contamination and exposure rates. The pathogen load and the exposure pathways for each pathogen in intervention and control villages were compared to understand the effects of WaSH intervention. Pathogens were detected in higher frequency and concentration from fomites samples, toilet handle (21.42%; 5.4,0 95%CI: mean log10 of 4.69, 5.96), utensils (23.5%; 5.47, 95%CI: mean log10 of 4.77, 6.77), and water vessels (22.42%; 5.53, 95%CI: mean log10 of 4.79, 6.60) as compared to cleaning water (14.36%; 5.05, 95%CI: mean log10 of 4.36, 5.89), drinking water (14.26%; 4.37, 85%CI: mean log10 of 4.37, 5.87), and hand rinse samples (16.92%; 5.49, 95%CI: mean log10 of 4.77, 6.39). There was no clear evidence that WaSH intervention reduced overall pathogen contamination in any tested pathway. However, we observed a significant reduction (p < 0.05) in the prevalence, but not concentration, of some target pathogens, including Enterococcus spp. in the intervention village compared to the control village for water and hands rinse samples. Conversely, no significant reduction in target pathogen concentration was observed for water and hand rinse samples. In swab samples, there was a reduction mostly in pathogen concentration rather than pathogen prevalence, highlighting that a reduction in pathogen prevalence was not always accompanied by a reduction in pathogen concentration. This study provides an understanding of WaSH intervention on microbe concentrations. Such data could help with better planning of intervention activities in the future.


Assuntos
Água Potável , Saneamento , Fômites , Água , Nepal/epidemiologia , Higiene
2.
Food Environ Virol ; 16(1): 65-78, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372960

RESUMO

Restroom use has been implicated in a number of viral outbreaks. In this study, we apply quantitative microbial risk assessment to quantify the risk of viral transmission by contaminated restroom fomites. We estimate risk from high-touch fomite surfaces (entrance/exit door, toilet seat) for three viruses of interest (SARS-CoV-2, adenovirus, norovirus) through eight exposure scenarios involving differing user behaviors, and the use of hand sanitizer following each scenario. We assessed the impacts of several sequences of fomite contacts in the restroom, reflecting the variability of human behavior, on infection risks for these viruses. Touching of the toilet seat was assumed to model adjustment of the seat (open vs. closed), a common touch point in single-user restrooms (home, small business, hospital). A Monte Carlo simulation was conducted for each exposure scenario (10,000 simulations each). Norovirus resulted in the highest probability of infection for all exposure scenarios with fomite surfaces. Post-restroom automatic-dispensing hand sanitizer use reduced the probability of infection for each virus by up to 99.75%. Handwashing within the restroom, an important risk-reduction intervention, was not found to be as effective as use of a non-touch hand sanitizer dispenser for reducing risk to near or below 1/1,000,000, a commonly used risk threshold for comparison.


Assuntos
Higienizadores de Mão , Norovirus , Vírus , Humanos , Toaletes , Fômites , Norovirus/genética , Medição de Risco
3.
Cureus ; 16(1): e52055, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38344582

RESUMO

Introduction Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often occurs among family members. Elucidating where viable SARS-CoV-2 virions, and not just residual viral RNA, are present in the house is necessary to prevent the further spread of the coronavirus disease 2019 (COVID-19). We aimed to evaluate the environmental surface contamination levels of both SARS-CoV-2 RNA and viable viruses in the homes of housebound patients with COVID-19. Methods Environmental samples were collected from the households of three patients in April and July 2022 when the number of new COVID-19 cases in Japan was reported to be approximately 50,000 and 200,000 cases per day, respectively. For each case, samples were obtained from 19-26 household sites for seven consecutive days. SARS-CoV-2 RNA was examined in 455 samples through reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and RT-qPCR-positive samples were subjected to plaque assay to detect viable viruses. Results Among the 455 samples, 63 (13.8%) that were collected from patients' pillows and comforters, doorknobs, chairs, and refrigerators tested positive by RT-qPCR. The maximum detection rate of SARS-CoV-2 RNA-positive samples in each case ranged from 20.0% to 57.7% on days 1 to 3. The detection rate gradually decreased to 0-5.3% as the days elapsed. Although all RT-qPCR-positive samples were examined, no viable viruses were detected in these samples. Conclusions Although environmental contamination of SARS-CoV-2 RNA was observed in the homes of housebound patients with COVID-19, no viable viruses were isolated. This suggests that the indirect transmission risk from fomites was low.

4.
Avian Dis ; 67(4): 305-309, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38300651

RESUMO

Avian influenza (AI) is a highly contagious disease that can be transmitted to naïve birds through fomites. The survival of AI viruses (AIV) on nonporous and porous fomites also dictates how long the fomite can serve as a vehicle for virus transmission. AIVs are known to be inactivated by ozone and ultraviolet (UV) light. However, the combined effect of UV light and ozone in combating AIV on different fomites has not been investigated. This study was undertaken to determine AIV inactivation by a commercial device called the BioSec shoe sanitizing station. This device generates both ozone and UV light for 8 sec when activated. We evaluated this device against three different subtypes of AIVs applied on seven different fomites. In general, the device inactivated all three AIV subtypes loaded on all fomites but to varying degrees of inactivation. The percentage of virus reduction on nonporous fomites (98.6%-99.9%) was higher than on porous fomites (90.0%-99.5%). In conclusion, this new device has the potential to help reduce the risk of transmission of AIV.


Inactivación de cuatro subtipos del virus de la influenza A mediante un dispositivo comercial usando luz ultravioleta y ozono. La influenza aviar (IA) es una enfermedad altamente contagiosa que puede transmitirse a aves susceptibles a través de fómites. La supervivencia de los virus de la influenza aviar en fómites porosos y no porosos también determina cuánto tiempo el fómite puede servir como vehículo para la transmisión del virus. Se sabe que los virus de influenza aviar son inactivados por el ozono y la luz ultravioleta (UV). Sin embargo, no se ha investigado el efecto combinado de la luz ultravioleta y el ozono para inactivar el virus de la influenza aviar en diferentes fómites. Este estudio se llevó a cabo para determinar la inactivación del virus de la influenza aviar mediante un dispositivo comercial llamado estación de desinfección de calzado BioSec. Este dispositivo genera ozono y luz ultravioleta durante 8 segundos cuando se activa. Se evaluó este dispositivo frente a cuatro subtipos diferentes del virus influenza aviar aplicados en siete fómites diferentes. En general, el dispositivo inactivó los cuatro subtipos de influenza aviar inoculados en todos los fómites, pero con distintos grados de inactivación. El porcentaje de reducción de virus en fómites no porosos (98.6%­99.9%) fue mayor que en fómites porosos (90.0%­99.5%). En conclusión, este nuevo dispositivo tiene el potencial de ayudar a reducir el riesgo de transmisión del virus de la influenza aviar.


Assuntos
Vírus da Influenza A , Ozônio , Doenças das Aves Domésticas , Animais , Raios Ultravioleta , Fômites
5.
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi ; 41(11): 859-863, 2023 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-38073218

RESUMO

People are exposed to a variety of different harmful factors through their daily life, diet, and occupational environment, and exposure to these dangerous factors results in varying degrees of damage to the organism. The damage to mitochondria from exposure to chemical harmful factors in environment is of increasing concern. The integrity of the mitochondrial genome is critical for mitochondrial function and cellular homeostasis, and mitochondria are susceptible to damage and mitochondrial dysfunction when stimulated by various harmful chemical environmental factors. It has been shown that exposure to a variety of chemical pollutants can produce varying degrees of damage to mitochondria, and these pollutants may cause mitochondrial structural and functional disorders by inducing oxidative stress, including impaired electron respiratory chain transmission, alterations in mitochondrial membrane potential, mitochondrial DNA mutations/deletions, and mitochondrial DNA copy number variation. Mitochondrial damage can further lead to abnormal cell function, apoptosis, and death, which induce related diseases. Therefore, this paper provides a review of the role of chemical factor exposure in the environment, such as heavy metals, on mitochondrial damage.


Assuntos
DNA Mitocondrial , Poluentes Ambientais , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Poluentes Ambientais/toxicidade , Variações do Número de Cópias de DNA , Mitocôndrias/metabolismo , Dano ao DNA , Estresse Oxidativo , Exposição Ambiental/efeitos adversos
6.
J Prev Med Hyg ; 64(2): E137-E144, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37654857

RESUMO

Introduction: UV-C has proven to be an effective virucide and microbicide, and its cost-effectiveness allowed it to spread as a disinfecting procedure in different environments. Methods: The study aims to determine the microbicide activity on Staphylococcus aureus, Escherichia coli and SARS-CoV-2 of the UV-C Boxer by Cartoni S.p.A. Three separate experiments were performed to assess the effectiveness of the UV-C disinfection device on different materials, directly on surfaces of a video camera and on a specific carrier for SARS-CoV-2. Results: In all three experiments, a significant abatement of bacterial and viral contamination was reached after 60 seconds on carriers and after 3 minutes on all examined surfaces of the video camera, with a higher reduction on glass carriers. Conclusions: UV-C devices may be a valuable tool to implement in the working routine to achieve a higher level of safety in work environments.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Filmes Cinematográficos , SARS-CoV-2 , Desinfecção , Escherichia coli
7.
Appl Environ Microbiol ; 89(7): e0062223, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37347194

RESUMO

SARS-CoV-2 is primarily a respiratory virus that can potentially be transmitted through fomites. Sodium hypochlorite (NaOCl) and peracetic acid (PAA) are widely used disinfectants on surfaces in diverse settings such as hospitals and food production facilities. The objectives of this study were to investigate the virucidal efficacy of NaOCl and PAA against SARS-CoV-2 using the ASTM standard methods. In the suspension assay, NaOCl and PAA (5, 50, and 200 ppm) were tested against SARS-CoV-2 in the presence/absence of soil load after 1 min of contact time. In the carrier assay, NaOCl and PAA were tested at 200, 400, 600, and 1,000 ppm for 1 min and 200 and 1,000 ppm for 5 and 10 min. Stainless steel (SS) and high-density polyethylene (HDPE) disks were used as carriers. The virus was suspended in soil load and the disinfectants were prepared in 300 ppm of hard water. Virus quantification was done by TCID50 assay using Vero-E6 cell line. NaOCl and PAA were effective (> 3 log reduction in infectious virus) at 50 ppm in the absence of soil load. However, in the presence of soil load, 200 ppm was required for > 3 log reduction in virus infectivity. In contrast, NaOCl and PAA at 200 ppm and with a 1-min contact time were not effective against SARS-CoV-2 on either SS or HDPE surfaces. PAA at 200 ppm for 10 min was effective against SARS-CoV-2 on SS and HDPE surfaces, whereas NaOCl required 1,000 ppm for 10 min to be effective against SARS-CoV-2 on both surfaces. IMPORTANCE In the context of the COVID-19 pandemic, the World Health Organization (WHO) recommended the use of chlorine-based products such as sodium hypochlorite (NaOCl) at 1,000 ppm for a minimum of 1 min to disinfect environmental surfaces. However, this recommendation was not based on validated studies on the actual SARS-CoV-2 itself. In fact, over half of the chemical disinfectants, including many peracetic acid products, listed in EPA List N were approved based on "kills a harder-to-kill pathogen" without further validation on SARS-CoV-2. Research on SARS-CoV-2 is restricted to BSL3 laboratories and the urgency of tackling the pandemic might explain the lack of studies on the actual virus. Our results show that the WHO recommendation of 1 min contact time with 1,000 ppm NaOCl is not effective against SARS-CoV-2 on surfaces. Also, our results indicate that PAA is effective against SARS-CoV-2 on surfaces and can be used as safer and more environmentally friendly alternative to NaOCl at a lower concentration.


Assuntos
COVID-19 , Desinfetantes , Humanos , Hipoclorito de Sódio/farmacologia , Ácido Peracético/farmacologia , SARS-CoV-2 , Pandemias , Polietileno , Desinfetantes/farmacologia
8.
Pathog Glob Health ; 117(8): 681-695, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350182

RESUMO

The Coronavirus disease 19 (COVID-19) pandemics, caused by severe acute respiratory syndrome coronaviruses, SARS-CoV-2, represent an unprecedented public health challenge. Beside person-to-person contagion via airborne droplets and aerosol, which is the main SARS-CoV-2's route of transmission, alternative modes, including transmission via fomites, food and food packaging, have been investigated for their potential impact on SARS-CoV-2 diffusion. In this context, several studies have demonstrated the persistence of SARS-CoV-2 RNA and, in some cases, of infectious particles on exposed fomites, food and water samples, confirming their possible role as sources of contamination and transmission. Indeed, fomite-to-human transmission has been demonstrated in a few cases where person-to-person transmission had been excluded. In addition, recent studies supported the possibility of acquiring COVID-19 through the fecal-oro route; the occurrence of COVID-19 gastrointestinal infections, in the absence of respiratory symptoms, also opens the intriguing possibility that these cases could be directly related to the ingestion of contaminated food and water. Overall, most of the studies considered these alternative routes of transmission of low epidemiological relevance; however, it should be considered that they could play an important role, or even be prevalent, in settings characterized by different environmental and socio-economic conditions. In this review, we discuss the most recent findings regarding SARS-CoV-2 alternative transmission routes, with the aim to disclose what is known about their impact on COVID-19 spread and to stimulate research in this field, which could potentially have a great impact, especially in low-resource contexts.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , RNA Viral , Fômites , Água
9.
Health Secur ; 21(4): 303-309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37289796

RESUMO

The pursuit of disinfecting porous materials or fomites to inactivate viral agents has special challenges. To address these challenges, a highly portable chlorine dioxide (ClO2) gas generation system was used to ascertain the ability of a gaseous preparation to inactivate a viral agent, the MS2 bacteriophage, when associated with potentially porous fomites of cloth, paper towel, and wood. The MS2 bacteriophage is increasingly used as a model to identify means of inactivating infectious viral agents of significance to humans. Studies showed that MS2 bacteriophage can be applied to and subsequently recovered from potential porous fomites such as cloth, paper towel, and wood. Paired with viral plaque assays, this provided a means for assessing the ability of gaseous ClO2 to inactivate bacteriophage associated with the porous materials. Notable results include 100% inactivation of 6 log bacteriophage after overnight exposure to 20 parts per million(ppm) ClO2. Reducing exposure time to 90 minutes and gas ppm to lower concentrations proved to remain effective in bacteriophage elimination in association with porous materials. Stepwise reduction in gas concentration from 76 ppm to 5 ppm consistently resulted in greater than 99.99% to 100% reduction of recoverable bacteriophage. This model suggests the potential of ClO2 gas deployment systems for use in the inactivation of viral agents associated with porous potential fomites. The ClO2 gas could prove especially helpful in disinfecting enclosed areas containing viral contaminated surfaces, rather than manually spraying and wiping them.


Assuntos
Bacteriófagos , Compostos Clorados , Desinfetantes , Humanos , Desinfecção , Cloro , Desinfetantes/farmacologia , Fômites , Porosidade , Óxidos/farmacologia , Compostos Clorados/farmacologia
10.
Am J Infect Control ; 51(12): 1377-1383, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37271422

RESUMO

BACKGROUND: Contaminated laundry contributes to infectious disease spread in residential and home health care settings. The objectives were to (1) evaluate pathogen transmission risks for individuals doing laundry, and (2) compare hand hygiene timing to reduce risks. METHODS: A quantitative microbial risk assessment using experimental data from a laundry washing effectiveness study was applied to estimate infection risks from SARS-CoV-2, rotavirus, norovirus, nontyphoidal Salmonella, and Escherichia coli in 4 laundry scenarios: 1 baseline scenario (no hand hygiene event) and 3 hand hygiene scenarios (scenario 1: after moving dirty clothes to the washing machine, scenario 2: after moving washed clothes to the dryer, and scenario 3: hand hygiene events following scenario 1 and 2). RESULTS: The average infection risks for the baseline scenario were all greater than 2 common risk thresholds (1.0×10-6and 1.0×10-4). For all organisms, scenario 1 yielded greater risk reductions (39.95%-99.86%) than scenario 2 (1.35%-55.25%). Scenario 3 further reduced risk, achieving 1.0×10-6(SARS-CoV-2) and 1.0×10-4risk thresholds (norovirus and E. coli). CONCLUSIONS: The modeled results suggest individuals should reduce hand-to-facial orifice (eyes, nose, and mouth) contacts and conduct proper hand hygiene when handling contaminated garments. More empirical data are needed to confirm the estimated risks. DATA AVAILABILITY STATEMENT: The data and code that support the findings of this study can be retrieved via a Creative Commons Zero v1.0 Universal license in GitHub at https://github.com/yhjung1231/Laundry-QMRAproject-2022.git DOI: http://doi.org/10.5281/zenodo.7122065.


Assuntos
Higiene das Mãos , Humanos , Escherichia coli , Higiene , SARS-CoV-2 , Medição de Risco
12.
J Appl Behav Anal ; 56(3): 549-564, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37179496

RESUMO

Fomite-mediated self-infection via face touching is an understudied transmission pathway for infectious diseases. We evaluated the effect of computer-mediated vibrotactile cues (presented through experimental bracelets located on one or both hands of the participant) on the frequency of face touching among eight healthy adults in the community. We conducted a treatment evaluation totaling over 25,000 min of video observation. The treatment was evaluated through a multiple-treatment design and hierarchical linear modeling. The one-bracelet intervention did not produce significantly lower levels of face touching across both hands, whereas the two-bracelet intervention did result in significantly lower face touching. The effect increased over repeated presentations of the two-bracelet intervention, with the second implementation producing, on average, 31 fewer face-touching percentual points relative to baseline levels. Dependent on the dynamics of fomite-mediated self-infection via face touching, treatment effects could be of public health significance. The implications for research and practice are discussed.


Assuntos
Fômites , Tecnologia Háptica , Adulto , Humanos , Retroalimentação , Tato , Saúde Pública
13.
Viruses ; 15(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243160

RESUMO

The recent multi-country outbreak of Mpox (Monkeypox disease) constituted a public health emergency. Although animal-to-human transmission is known to be the primary way of transmission, an increasing number of cases transmitted by person-to-person contact have been reported. During the recent Mpox outbreak sexual or intimate contact has been considered the most important way of transmission. However, other routes of transmission must not be ignored. The knowledge of how the Monkeypox Virus (MPXV) spreads is crucial to implement adequate measures to contain the spread of the disease. Therefore, this systematic review aimed to collect scientific data published concerning other implicated sources of infection beyond sexual interaction, such as the involvement of respiratory particles, contact with contaminated surfaces and skin-to-skin contact. The current study was performed using the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Publications analyzing contacts of Mpox index cases and their outcome after contact were included. A total of 7319 person-to-person contacts were surveyed and 273 of them became positive cases. Positive secondary transmission of MPXV was verified after contact with people cohabiting in the same household, with family members, with healthcare workers, or within healthcare facilities, and sexual contact or contact with contaminated surfaces. Using the same cup, sharing the same dishes, and sleeping in the same room or bed were also positively associated with transmission. Five studies showed no evidence of transmission despite contact with surfaces, skin-to-skin contact, or through airway particles within healthcare facilities where containment measures were taken. These records support the case for person-to-person transmission and suggest that other types of contact beyond sexual contact pose a significant risk of acquiring the infection. Further investigation is crucial to elucidate MPXV transmission dynamics, and to implement adequate measures to contain the spread of the infection.


Assuntos
Animais , Humanos , Surtos de Doenças , Saúde Pública , Comportamento Sexual , Família , Vírus da Varíola dos Macacos
14.
Am J Infect Control ; 51(4): 413-419, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37010998

RESUMO

BACKGROUND: Temporary isolation wards have been introduced to meet demands for airborne-infection-isolation-rooms (AIIRs) during the COVID-19 pandemic. Environmental sampling and outbreak investigation was conducted in temporary isolation wards converted from general wards and/or prefabricated containers, in order to evaluate the ability of such temporary isolation wards to safely manage COVID-19 cases over a period of sustained use. METHODS: Environmental sampling for SARS-CoV-2 RNA was conducted in temporary isolation ward rooms constructed from pre-fabricated containers (N = 20) or converted from normal-pressure general wards (N = 47). Whole genome sequencing (WGS) was utilized to ascertain health care-associated transmission when clusters were reported amongst HCWs working in isolation areas from July 2020 to December 2021. RESULTS: A total of 355 environmental swabs were collected; 22.4% (15/67) of patients had at least one positive environmental sample. Patients housed in temporary isolation ward rooms constructed from pre-fabricated containers (adjusted-odds-ratio, aOR = 10.46, 95% CI = 3.89-58.91, P = .008) had greater odds of detectable environmental contamination, with positive environmental samples obtained from the toilet area (60.0%, 12/20) and patient equipment, including electronic devices used for patient communication (8/20, 40.0%). A single HCW cluster was reported amongst staff working in the temporary isolation ward constructed from pre-fabricated containers; however, health care-associated transmission was deemed unlikely based on WGS and/or epidemiological investigations. CONCLUSION: Environmental contamination with SARS-CoV-2 RNA was observed in temporary isolation wards, particularly from the toilet area and smartphones used for patient communication. However, despite intensive surveillance, no healthcare-associated transmission was detected in temporary isolation wards over 18 months of prolonged usage, demonstrating their capacity for sustained use during succeeding pandemic waves.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , RNA Viral , Hospitais
15.
PeerJ ; 11: e15202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37073274

RESUMO

Background: Handwashing is an important intervention which can reduce indirect disease transmission, however soap and water for handwashing purposes is not available in some low-resource regions. When handwashing with soap and water is not possible, individuals may use alternatives such as the Supertowel (a microfiber towel with an antimicrobial coating). Testing of viral inactivation as a result of antimicrobial treatment on the Supertowel, however, has been limited. The goal of this study is to provide information about the performance of the Supertowel's antimicrobial treatment against viruses, which will help inform the use of the towels as handwashing alternatives. Methods: We seeded the Supertowel and a regular microfiber towel with two bacteriophages (enveloped Phi6 and non-enveloped MS2) and monitored viral inactivation over time. Additionally, we assessed if temperature, humidity, whether the towel was initially wet or dry, or virus type had an effect on viral decay rate constants. Virus concentrations were measured repeatedly over 24 h. Results: We found that neither towel type (whether the towel was a Supertowel or a regular microfiber towel) nor humidity were significant variables in our model of decay rate constants (P = 0.06 and P = 0.22, respectively). We found that the variables of temperature, whether towels were initially wet versus dry, and virus type were significantly different from 0, suggesting that these variables explained variance in the decay rate constant (P = 6.55 × 10-13, P = 0.001, and P < 2 × 10-16, respectively). Higher temperatures, dry towels, and enveloped viruses all resulted in increases in the decay rate constant. Conclusions: Viruses seeded onto a Supertowel decay similar to viruses seeded onto a regular towel indicating that the virucidal potential of the Supertowel is minimal.


Assuntos
Anti-Infecciosos , Bacteriófagos , Vírus , Humanos , Sabões , Inativação de Vírus
16.
Viruses ; 15(4)2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-37112957

RESUMO

Transmission of H9N2 avian influenza virus (AIV) can occur in poultry by direct or indirect contact with infected individuals, aerosols, large droplets and fomites. The current study investigated the potential of H9N2 AIV transmission in chickens via a fecal route. Transmission was monitored by exposing naïve chickens to fecal material from H9N2 AIV-infected chickens (model A) and experimentally spiked feces (model B). The control chickens received H9N2 AIV. Results revealed that H9N2 AIV could persist in feces for up to 60-84 h post-exposure (PE). The H9N2 AIV titers in feces were higher at a basic to neutral pH. A higher virus shedding was observed in the exposed chickens of model B compared to model A. We further addressed the efficacy of Toll-like receptor (TLR) ligands to limit transmission in the fecal model. Administration of CpG ODN 2007 or poly(I:C) alone or in combination led to an overall decrease in the virus shedding, with enhanced expression of type I and II interferons (IFNs) and interferon-stimulating genes (ISGs) in different segments of the small intestine. Overall, the study highlighted that the H9N2 AIV can survive in feces and transmit to healthy naïve chickens. Moreover, TLR ligands could be applied to transmission studies to enhance antiviral immunity and reduce H9N2 AIV shedding.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Galinhas , Ligantes , Receptores Toll-Like , Fezes , Doenças das Aves Domésticas/prevenção & controle
17.
Artigo em Espanhol | IBECS | ID: ibc-218765

RESUMO

Objetivo: Estudiar la presencia de SARS-CoV-2 en superficies (alto, medio y bajo contacto) y aires de espacios no sanitarios pero de elevada afluencia de público para evaluar el riesgo de contagio ambiental. Método: Se ha realizado el análisis de las superficies y de los aires por RT-qPCR para detectar la presencia de SARS-CoV-2. Resultados: Se obtuvieron 394 superficies y 23 muestras de aire de espacios de alta afluencia de personas, como oficinas, centros comerciales y residencias de ancianos. El virus no fue detectado en ninguna de las muestras analizadas. Conclusión: Aunque no podemos concluir rotundamente que no existe un riesgo de infección ambiental por SARS-CoV-2 en espacios no sanitarios, sí podemos afirmar que el riesgo es casi nulo.(AU)


Objective: To study the presence of SARS-CoV-2 on surfaces (high, medium and low contacts) and airs in non-sanitary spaces with high public influx to evaluate the risk of environmental contagion. Method: Surfaces and airs were analysed by RT-qPCR to detect the presence of SARS-CoV-2. Results: A total of 394 surfaces and air samples were obtained from spaces with high public influx such as offices, shopping centres and nursing homes. The virus was not detected in any of the samples analysed. Conclusion: Although we cannot emphatically conclude that there is no risk of environmental infection by SARS-CoV-2 in non-sanitary spaces, we can affirm that the risk is almost non- existent.(AU)


Assuntos
Humanos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Pandemias , Infecções por Coronavirus/epidemiologia , Fômites , Transmissão de Doença Infecciosa , Incrustação Biológica , Doença Ambiental , Microbiologia , Técnicas Microbiológicas
18.
Cureus ; 15(1): e34136, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36843686

RESUMO

Background The coronavirus disease 2019 (COVID-19) pandemic is a global concern and has changed the way we practice medicine in acute hospital settings. This is particularly true with regard to patient triage, patient risk assessment, use of personal protective equipment, and environmental disinfection. Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is primarily through inhalation of respiratory droplets generated through talking, coughing, or sneezing. There is, however, a potential risk that respiratory droplets settling on inanimate surfaces and objects in the hospital environment could provide a reservoir for nosocomial infections in patients and pose a healthcare risk to medical staff. Indeed, there have been previous reports of healthcare-associated outbreaks in hospitals. Several authors have argued that the risk of transmission via fomites may be insignificant. It is, however, not clear what proportion of SARS-CoV-2 infections are attributable to direct contact with fomites; a few reports have indicated possible transmission via this route. Environmental contamination with SARS-CoV-2 in healthcare institutions has been shown to vary according to the function or service provided by a unit or department. Information that identifies hospital areas that have a propensity for higher environmental burden may improve the practice of infection control and environmental cleaning and decontamination in healthcare institutions. This study aimed to investigate environmental SARS-CoV-2 contamination in the clinical areas of patients with COVID-19 infection. Methodology We conducted a cross-sectional study performing swabbing of frequently touched surfaces, equipment, and ventilation ducts in five specific clinical areas of Peterborough City Hospital which is part of the North West Anglia NHS Foundation Trust. The five clinical areas that were chosen for swabbing were the Emergency Department (ED), Intensive Care Unit (ICU), Isolation Ward, Respiratory Ward, and a Gastroenterology Ward that was serving as a receiving ward at the height of the second COVID-19 infection wave in the United Kingdom. Surfaces to be swabbed were divided into the patient zone, doctor zone, and nursing zone. Swabs from the chosen surfaces were collected on two consecutive days. A total of 158 surface swabs were collected during the second wave of the COVID-19 pandemic. SARS-CoV-2 RNA was detected by reverse transcription polymerase chain reaction. Results The most contaminated clinical areas were the three receiving wards where 12% (11/96) of the swabs were positive. Inside the patient rooms, these surfaces included bed rails and controls, bedside tables, television screens, remote control units, and the room ventilation system. Outside the patient room, these surfaces included mobile computers and computer desk surfaces in the doctors' offices. All swabs taken from the ED and ICU were found to be negative. Conclusions Our study confirms the potential infection risks posed by environmental contamination with the SARS-CoV-2 virus. This highlights the importance of adequate environmental cleaning for proper infection control and prevention in healthcare settings.

19.
Heliyon ; 9(3): e13875, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36845037

RESUMO

Understanding transmission routes of SARS-CoV-2 is crucial to establish effective interventions in healthcare institutions. Although the role of surface contamination in SARS-CoV-2 transmission has been controversial, fomites have been proposed as a contributing factor. Longitudinal studies about SARS-CoV-2 surface contamination in hospitals with different infrastructure (presence or absence of negative pressure systems) are needed to improve our understanding of their effectiveness on patient healthcare and to advance our knowledge about the viral spread. We performed a one-year longitudinal study to evaluate surface contamination with SARS-CoV-2 RNA in reference hospitals. These hospitals have to admit all COVID-19 patients from public health services that require hospitalization. Surfaces samples were molecular tested for SARS-CoV-2 RNA presence considering three factors: the dirtiness by measuring organic material, the circulation of a high transmissibility variant, and the presence or absence of negative pressure systems in hospitalized patients' rooms. Our results show that: (i) There is no correlation between the amount of organic material dirtiness and SARS-CoV-2 RNA detected on surfaces; (ii) SARS-CoV-2 high transmissible Gamma variant introduction significantly increased surface contamination; (iii) the hospital with negative pressure systems was associated with lower levels of SARS-CoV-2 surface contamination and, iv) most environmental samples recovered from contaminated surfaces were assigned as non-infectious. This study provides data gathered for one year about the surface contamination with SARS-CoV-2 RNA sampling hospital settings. Our results suggest that spatial dynamics of SARS-CoV-2 RNA contamination varies according with the type of SARS-CoV-2 genetic variant and the presence of negative pressure systems. In addition, we showed that there is no correlation between the amount of organic material dirtiness and the quantity of viral RNA detected in hospital settings. Our findings suggest that SARS CoV-2 RNA surface contamination monitoring might be useful for the understanding of SARS-CoV-2 dissemination with impact on hospital management and public health policies. This is of special relevance for the Latin-American region where ICU rooms with negative pressure are insufficient.

20.
Am J Infect Control ; 51(1): 35-40, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569614

RESUMO

BACKGROUND: Current literature identifies mobile phones of staff as potential vectors for hospital-acquired infection. METHODS: A pre-post, quasi-experimental study was conducted in a 20 bed intensive care unit (ICU). Surface bioburden of personal and shared mobile phones was estimated with a luminometer, expressed in Relative Light Units (RLU). Effects of a simple sanitizing wipe-based disinfection routine were measured at baseline, and at 1, 3, 6, and 12 months after implementation of the disinfection routine. RESULTS: Personal mobile phones and shared phones of 30 on-shift ICU nurses were analyzed at each collection. RLUs for personal phones decreased from baseline to 12 months post-intervention (Geometric mean 497.1 vs 63.36 RLU; adj P < .001), while shared unit phones also demonstrated a decrease from baseline to 12 months post-intervention (Geometric mean 417.4 vs 45.90 RLU; adj P < .001). DISCUSSION: No recommended practice yet exists for disinfection of mobile phones in the acute care setting. The disinfection method and routine used in this study may have implications for use in acute care settings to reduce opportunities for infectious disease transmission.


Assuntos
Telefone Celular , Infecção Hospitalar , Humanos , Unidades de Terapia Intensiva , Infecção Hospitalar/prevenção & controle , Cuidados Críticos , Desinfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...